HPP-1
HPP-2
HPP-3
HPP-4

hpp-11. Why high pressure processing?
High Pressure Processing (HPP) is a method of food processing where food is subjected to elevated pressures (up to 87,000 pounds per square inch or approximately 6,000 atmospheres), with or without the addition of heat, to achieve microbial inactivation or to alter the food attributes in order to achieve consumer-desired qualities. Pressure inactivates most vegetative bacteria at pressures above 60,000 pounds per square inch. HPP retains food quality, maintains natural freshness, and extends microbiological shelf life. The process is also known as high hydrostatic pressure processing (HHP) and ultra high-pressure processing (UHP).

2. How does this technology benefit consumers?
High pressure processing causes minimal changes in the fresh characteristics of foods by eliminating thermal degradation. Compared to thermal processing, HPP results in foods with fresher taste, and better appearance, texture and nutrition. High pressure processing can be conducted at ambient or refrigerated temperatures, thereby eliminating thermally induced cooked off-flavors. The technology is especially beneficial for heat-sensitive products.

hpp-23. How does HPP work?
Most processed foods today are heat treated to kill bacteria, which often diminishes product quality. High pressure processing provides an alternative means of killing bacteria that can cause spoilage or food-borne disease without a loss of sensory quality or nutrients.
In a typical HPP process, the product is packaged in a flexible container (usually a pouch or plastic bottle) and is loaded into a high pressure chamber filled with a pressure-transmitting (hydraulic) fluid. The hydraulic fluid (normally water) in the chamber is pressurized with a pump, and this pressure is transmitted through the package into the food itself. Pressure is applied for a specific time, usually 3 to 5 minutes. The processed product is then removed and stored/distributed in the conventional manner. Because the pressure is transmitted uniformly (in all directions simultaneously), food retains its shape, even at extreme pressures. And because no heat is needed, the sensory characteristics of the food are retained without compromising microbial safety.

hpp-34. Can HPP be used for processing all foods?
Like any other processing method, HPP cannot be universally applied to all types of foods. HPP can be used to process both liquid and solid foods. Foods with a high acid content are particularly good candidates for HPP technology. At the moment, HPP is being used in the United States, Europe, and Japan on a select variety of high-value foods either to extend shelf life or to improve food safety. Some products that are commercially produced using HPP are cooked ready-to-eat meats, avocado products (guacamole), tomato salsa, applesauce, orange juice, and oysters.
HPP cannot yet be used to make shelf-stable versions of low-acid products such as vegetables, milk, or soups because of the inability of this process to destroy spores without added heat. However, it can be used to extend the refrigerated shelf life of these products and to eliminate the risk of various food-borne pathogens such as Escherichia coli, Salmonella and Listeria. Another limitation is that the food must contain water and not have internal air pockets. Food materials containing entrapped air such as strawberries or marshmallows would be crushed under high pressure treatment, and dry solids do not have sufficient moisture to make HPP effective for microbial destruction.

FRESHCODE HPP JUICE

Freshcode Interview by MVB.TV